绝密★启用前

2020年普通高等学校招生全国统一考试(三卷) 文科数学

- 一、选择题: 本题共 12 小题, 每小题 5 分, 共 60 分. 在每小题给出的四个选项中, 只有一项是符合题目要 求的.
- 1. 已知集合 $A = \{1,2,3,5,7,11\}$, $B = \{x | 3 < x < 15\}$, 则 $A \cap B$ 中元素的个数为(

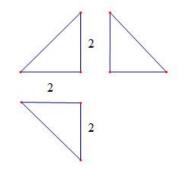
- A. 2 B. 3 C. 4

- A. 1-i B. 1+i C. -i D. i
- 3 设一组样本数据 x_1, x_2, \dots, x_n 的方差为 0.01,则数据 $10x_1, 10x_2, \dots, 10x_n$ 的方差为 ()
- A. 0.01
- B. 0.1
- C. 1
- 4. Logistic 模型是常用数学模型之一,可应用于流行病学领域。有学者根据公布数据建立了某地区新冠肺炎
- 累计确诊病例数 I(t) (t 的单位: 天) 的 Logisic 模型: $I(t) = \frac{K}{1 + e^{-0.23(t-53)}}$, 其中 K 为最大确诊病例数。当
- $I(t^*) = 0.95K$ 时,标志着已初步遏制疫情,则 t^* 约为($\ln 19 \approx 33$)(
- B. 63

- 5. $\exists \exists \sin \theta + \sin(\theta + \frac{\pi}{3}) = 1$, $\exists \sin(\theta + \frac{\pi}{6}) = ($

- A. $\frac{1}{2}$ B. $\frac{\sqrt{3}}{2}$ C. $\frac{2}{3}$ D. $\frac{\sqrt{2}}{2}$
- 6. 在平面内, A, B 是两个定点, C 是动点。若 $\overrightarrow{AC} \cdot \overrightarrow{BC} = 1$, 则点 C 的轨迹为 ()
- A.圆
- B.椭圆
- C.抛物线
- D.直线
- 7. 设 O 为坐标原点,直线 x=2 与抛物线 $C: y^2=2px(p>0)$ 交于 D, E 两点,若 $OD \perp DE$,则 C 的焦点 坐标为()
- A. $(\frac{1}{4},0)$
 - B. $(\frac{1}{2},0)$ C. (1,0)
- D. (2,0)
- 8. 点(0,-1)到直线 y = k(x+1) 距离的最大值为()

- A. 1 B. $\sqrt{2}$ C. $\sqrt{3}$ D. 2
- 9. 右图为某几何体的三视图,则该几何体的表面积是()



- A. $6+4\sqrt{2}$ B. $4+4\sqrt{2}$ C. $6+2\sqrt{3}$ D. $4+2\sqrt{3}$

- A. a < c < b B. a < b < c C. b < c < a
- 11. $\triangle ABC + \cos C = \frac{2}{3}$, AC = 4, BC = 3, $\emptyset \tan B = ($
- A. $\sqrt{5}$ B. $2\sqrt{5}$ C. $4\sqrt{5}$ D. $8\sqrt{5}$
- 12. 设函数 $f(x) = \sin x + \frac{1}{\sin x}$, 则 ()
- A. f(x) 的最小值为 2 B. f(x) 的图像关于 y 轴对称
- C. f(x) 的图像关于直线 $x = \pi$ 对称 D. f(x) 的图像关于直线 $x = \frac{\pi}{2}$ 对称
- 二、填空题: 本题共 4 小题, 每小题 5 分, 共 20 分.
- $x+y\geq 0$
- 14. 设双曲线 $C: \frac{x^2}{a^2} \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的一条渐近线为 $y = \sqrt{2}x$,则 C 的离心率为_
- 15. 设函数 $f(x) = \frac{e^x}{x + a}$, 若 $f(1) = \frac{1}{4}$, 则 $a = \underline{\hspace{1cm}}$
- 16. 已知圆维的底面半径为 1, 母线长为 3, 则该圆谁内半径最大的球的体积为

三、解答题: 本题共6小题, 共70分. 解答应写出文字说明、证明过程或演算步骤.

- 17. (12 分) 设等比数列 $\{a_n\}$ 满 $a_1 + a_2 = 4, a_3 a_1 = 8$.
- (1) 求 $\{a_n\}$ 的通项公式;
- (2) 设 S_n 为数列 $\left\{\log_3 a_n\right\}$ 的前n项和,若 $S_m + S_{m+1} = S_{m+3}$,求m.

18. (12 分) 某学生兴趣小组随机调查了某市 100 天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):

锻炼人次 空气质量等级	[0,200]	(200,400]	(400,600]
1 (优)	2	16	25
2 (良)	5	10	12
3(轻度污染)	6	7	8
4(中度污染)	7	2	0

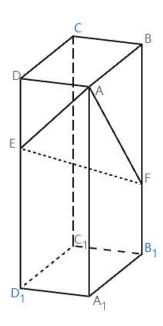
- (1) 分别估计该市一天的空气质量等级为1,2,3,4的概率;
- (2) 求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表):
- (3) 若某天的空气质量等级为1或2.则称这天"空气质量好": 若某天的空气质量等级为3或4,则称这天"空气质量不好"。根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?

	人次≤400	人次 > 400
空气质量好		
空气质量不好		

$$\text{ft: } K^2 = \frac{n(ad - bc)^2}{(a+b)(c+d)(a+c)(b+d)}, \qquad \frac{P(K^2 \ge k)}{k} \qquad 0.050 \qquad 0.010 \qquad 0.001$$

19. (12 分)如图,在长方体 $ABCD - A_1B_1C_1D_1$ 中,点 E,F 分别在棱 DD_1,BB_1 上,且 $2DE = ED_1,BF = 2FB_1$. 证明:

- (1) $\stackrel{\text{def}}{=} AB = BC$, $EF \perp AC$:
- (2) 证明:点 C_1 在平面AEF内.



20. (12 分)已知函数 $f(x) = x^3 - kx + k^2$.

- (1) 讨论 f(x) 的单调性:
- (2) 若 f(x) 有三个零点,求k 的取值范围。

(12 分) 已知椭圆 $\frac{x^2}{25} + \frac{y^2}{m} = 1(0 < m < 5)$ 的离心率为 $\frac{\sqrt{15}}{4}$, A, B 分别为 C 的左、右顶点。

- (1) 求 C 的方程:
- (2) 若点 P 在 C 上,点 Q 在直线 x=6 上,且 |BP|=|BQ| , $BP\perp BQ$,求 \triangle APQ 的面积。

- (二)、选考题: 共 10 分. 请考生从 22、23 题中任选一题做答,如果多做,则按所做的第一题计分.
- 22.【极坐标与参数方程】(10分)
- 21. 在直角坐标系 xOy 中,曲线 C 的参数方程为 $\begin{cases} x = 2 t t^2 \\ y = 2 3t + t^2 \end{cases}$ (t 为参数,且 $t \neq 1$),C 与坐标轴交于 A,B 两点.
- (1) 求|AB|;
- (2) 以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求直线 AB 的极坐标方程.

23. 【选修 4-5: 不等式选讲】(10 分)

设 $a,b,c \in R, a+b+c=0, acb=1$.

- (1) 证明: ab+bc+ca<0;
- (2) 用 $\max\{a,b,c\}$ 表示 a,b,c 的最大值,证明: $\max\{a,b,c\} \ge \sqrt[3]{4}$.